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ABSTRACT
We consider imitation learning for agents to learn good policies
from expert demonstration without any reward signal. Typical
methods focus on single-expert single-task imitation in a fully ob-
servable environment. In practice, however, agents mostly make
decisions based on their local observations, and the ability to gener-
alize across various experts’ behaviors and multiple tasks is crucial
for practical imitation learning. In this paper, we propose to take
advantage of InfoGAIL with RNN-based belief state representations
for multi-modal imitation learning in partially observable environ-
ments. We confirm the effectiveness of multi-expert learning of
our method in a 2-dimensional environment, in which expert tra-
jectories consist of two human-distinguishable behaviors. Further
experimental results in continuous-control locomotion tasks reveal
that our method can also disentangle interpretable latent factors in
unlabeled multi-task demonstrations.
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1 INTRODUCTION
By learning from pre-collected expert demonstrations, Imitation
learning (IL) alleviates the difficulty in deployment of reinforcement
learning (RL), a method starving for interactions with environments
paired with appropriate reward functions that are hard to design in
many scenarios [2, 18]. Existing IL methods, e.g. Behavior Cloning
(BC) [17], Inverse Reinforcement Learning (IRL) [1, 16] and Gener-
ative Adversarial Imitation Learning (GAIL) [13], are restricted to
learning from clear single-expert demonstrations for a single task
under full observability assumption. However, in reality, expert
demonstrations are usually collected by several experts, who may
have different levels of expertise, expertise in different tasks, or
different preferences even at the same situations. Therefore, re-
searchers have proposed methods to tackle the diversity in complex
multi-modal expert demonstrations, including multi-expert [15]
and multi-task [11, 22] ones. These methods are nonetheless still in-
adequate to be appropriately applied in real-world tasks in partially
observable environments.

To that end, in this paper, we adopt recent advances in deep
representation learning that enables the agent to encode its partial
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observation history into a belief state to help decision making, in-
cluding recurrent-neural-network based methods [8, 10] and atten-
tion based ones [5, 23]. Specifically, we extend InfoGAIL to Partially
Observable Markov Decision Process (POMDP) settings with RNN-
based belief state representations to help solve real-world imitation
learning problems. Unlike other approaches, where decoupled learn-
ing is used [9], we jointly learn the belief state representations with
the policy and critic modules. Experiments are conducted in two
partially observable environments, including a 2D environment
and a continuous-control locomotion environment. We show the
effectiveness of our method to disentangle human-interpretable la-
tent factors and learn from unlabeled multi-expert behaviors along
with multi-task demonstrations in a self-supervised fashion.

2 PRELIMINARIES
2.1 Partially Observable Environments
We formulate a partially observable enviroment as a POMDP, a
6-tuple ⟨S,A,P,R,Z,O⟩, where S, A, Z denote the state, ac-
tion and observation space respectively. P is the dynamic function.
At each time step t , the agent only perceives the partial obser-
vation zt ∈ Z w.r.t the underlying state st ∈ S, characterized
by the observation function O : S → Z. The agent chooses an
action relying on its policy π (at |zt ) : Z × A → [0, 1]. The re-
ward function R : S × A → R provides the reward feedback.
The objective of the agent is to maximize its discounted expected
return Eat∼π (· |st ),st∼p(· |st−1,at−1)

[∑∞
t=0 γ

tR(st ,at )
]
. Specifically,

when the observation function O becomes an identity mapping
such that zt = st , st is fully observable to the agent, which leads to
a classic Markov Decision Process (MDP).

2.2 Multi-Modal Imitation Learning
Many recently proposed methods in imitation learning are based
on Generative Adversarial Imitation Learning (GAIL), showing
high effectiveness in learning the agent’s policy. To tackle unla-
beled multi-modal demonstrations and inspired by InfoGAN [6],
Li et al. [15] and Hausman et al. [11] both propose to correlate the
learned policy with latent variables c through mutual information
regularization. In this paper, we mainly follow InfoGAIL [15] with
a formal objective as:

min
θ ,ψ

max
ω
Eπθ [log(Dω (s,a))] + EME [log(1 − Dω (s,a))]

− λ1LMI(π , Pψ ) − λ2H (πθ ),
(1)

whereME is the expert policy, LMI is the variational lower bound of
the mutual information between latent code c and the state-action
pairs generated from πθ . Define Pψ as the approximated posterior
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Figure 1: Multi-expert 2D trajectories. Unlabeled Experts’
demonstrations have twomodes: starting from (0, 0), go anti-
clockwise or clockwise. Blue andGreen represent two distin-
guishable sets of optimal behaviors. Our method precisely
recovers the multi-modal policy while InfoGAIL fails.

to be optimized, MI as the mutual information, and it follows:

LMI(π , Pψ ) = Ec∼p(c),a∼πθ (· |s ,c)[log Pψ (c |s,a)] + H (c), (2)
≤ MI(c; (s,a)). (3)

3 METHOD
In real-world environments, it is difficult to reveal full states to
construct MDP settings for agent learning, thus POMDP is better
for modeling.

A general technique for learning in a POMDP relies on Recurrent
Neural Networks (RNN) [10], which embeds the history trajectory
τt−1 = {(zi ,ai ) | i = 0, . . . , t − 1} as a hidden state bt−1. Com-
bining the current observation zt , action at and previous state
embedding bt−1, the RNN network produces a new state embed-
ding bt . Formally, we can represent the state embedding bt with
RNN parametererized by ϕ as below:

bt (τt ;ϕ) = RNNϕ (bt−1(τt−1;ϕ), zt ,at−1). (4)

Specifically, we extend InfoGAIL to learn from multi-modal
demonstrations in partially observable environments with learning
the underlying state representation using separate RNN models in
all modules (π ,D, P ). Asides, the traditional minimax objective of
GAN suffers from mode collapse and vanishing gradient [4, 19];
thus we apply Wasserstein GAN [3] to stabilize training. The ob-
jective is as below:

min
θ ,ψ

max
ω
Ea∼πθ (· |b(τ ;θ ),c)[Dω (b(τ ;ω),a)] − λ1LMI(πθ , Pψ )

− Ea∼ME [Dω (b(τ ;ω),a)] − λ2H (πθ ),
(5)

where LMI is the variational lower bound:

LMI(πθ , Pψ ) = Ec∼p(c),πθ [log Pψ (c |b(τ ;ψ ))] + H (c), (6)
≤ MI(c;b(τ ;ψ )). (7)

Unlike InfoGAIL, we aims to maximize the mutual information
between latent code and belief representations of generated trajec-
tories. Unlike belief-module imitation learning in [8], our method
requires no belief regularization to avoid mode collapses, since the
belief state representation for π , D and P are modeled via three
independent RNN models: b(·;θ ), b(·;ω) and b(·;ψ ).

4 EXPERIMENTS
We choose Proximal Policy Optimization (PPO) [21] with General-
ized Advantage Estimation (GAE) [20] to train agents’ policies for
all experiments. During the training procedure, Adam optimizer
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(c) Normalized average returns of
learned policies with different latent
code during training in two tasks.

Figure 2: Multi-task MuJoCo control in Hopper-v3.

[14] is used to for learning parameter θ andψ , and RMSProp [12]
for parameter ω, where we set γ as 0.99, λ in GAE as 0.95, and the
learning rate is 2 × 10−4. We use GRUs [7] with 128 hidden cells
and bootstrapped random update [10], such that the architecture
has approximately the same number of network parameters and
similar training computational complexity as InfoGAIL. Latent code
is uniformly sampled.

4.1 Multi-Expert 2D Trajectories
We first confirm multi-expert learning of our method in a 2D en-
vironment, in which expert demonstrations consist of two distin-
guishable sets of optimal behaviors. Starting from the origin, both
anti-clockwise rotation around (0, 5) and clockwise rotation around
(0,−5) are optimal for returning back. The observation at each time
step is a 2D coordinate of the current position of the agent, and the
action is the moving direction with a unit-length movement. The
log standard deviation of noise in moving direction is 1. The setting
is harder than the similar experiment in [15] for less observations.
As shown in Fig. 1, we plot the trajectories sampled from learned
policies with our methods against InfoGAIL. In our implementation,
BC and GAIL do not converge, which randomly end up with one
mode and neglect the other, thus are not presented.

4.2 Multi-Task MuJoCo Control
In this section, we show our method can effectively learn policies
from multi-task expert demonstrations conducted on Hopper-v3,
a continuous control task simulated with MuJoCo [24]. As shown
in Fig. 2a and Fig. 2b, the agent is required to learn to go Forward
and Backward and receives rewards for both tasks respectively.
We set the partial observation as xyz-positions and angles, but no
xyz-velocities or angular velocities. We form the unlabeled expert
demonstrations with equivalent number of trajectories sampled
with experts in two tasks separately.

We use the true rewards obtained from the simulated environ-
ment for the evaluation. Fig. 2c presents the normalized average
returns w.r.t. the expert returns for both tasks during training. The
policy learned with latent code 1 converges to gain near-expert
returns for the Forward task, while the code 2 specializing for the
Backward. Our method succeeds in disentangling different tasks
during learning from unlabeled expert demonstrations with partial
observations, and recovers expert behaviors with over 76% returns
in both tasks.
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